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Coupled Strip Transmission Line With Three

Center Conductors

s. YAMAMOTO, STUDENT MEMBER, IEEE, T. AZAKAMI, MEMBER, IEEE, AND K. ITAKURA

Abstract—An exact analysis is made for the shielded coupled
strip transmission line with three center conductors. By means of the

immittance matrices presented, the electrical behavior of the coupled

strip transmission line of thk type may be completely described.
Design formulas which enable one to evaluate the cross-section
&lmensions from the desired values of characteristic immittances
are derived for the two kinds of the line configurations. Equivalent
circuits of the two-port networks for various port conditions are also
presented. In addition, an application is discussed involving the

asymmetrical coupled strip transmission line with two center con-

ductors. The Appendix gives the derivation of the design formulas

by means of conformal mapping techniques.

1. INTRODUCTION

T

HE multiconductor transmission line has been

found to have interesting properties and, conse-

quently, has received much attention [1]. Appli-

cations have been made to antennas [2], transmission

lines for high speed computers [3], and various circuit

components [4 ]– [8 ]. Under the appropriate boundary

conditions, multiconductor transmission lines have been

utilized as filters in the microwave region. Comb-line

and interdigital filters are two examples. The former has

been treated by Matthaei [5] and the latter has been

investigated by Matthaei [4] and more recently by

Wenzel [8].

In these papers, the design data have been obtained

under the assumption that no direct coupling exists

between nonadjacent conductors. Neglect of this type

of coupling allows TEM propagation along multi-

conductor transmission lines to be described in terms of

only two independent modes, and therefore simplifies

the analysis. In so far as rectangular bars or circular

cylindrical rods are used as component lines, this

assumption is considered to be accurate. However, in a

more precise analysis or when the other configurations

are employed, it is necessary to take into account the
coupling between nonadjacent lines as is done in this

paper.

From the viewpoint of the exact synthesis of dis-

tributed TEM-mode networks [9], [10], it is important

and desirable to introduce the coupled quarter-wave

transmission lines with more than three center con-

ductors as the canonical sections. No exact theory, how-
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ever, seems to be available for such coupled transmission

lines, including design formulas for the cross section of

the line configurations as well as immittance matrices.

The purpose of this paper is to present the results of

an exact analysis for the coupled three-conductor trans-

mission line with common return in strip-line form, in

which significant coupling exists between nonadjacent

lines. The procedures presented will be applicable to

more complicated coupled transmission lines.

II. FUNDAMENTAL MODES

We consider the Iossless coupled transmission line

consisting of three parallel conductors above ground

with uniform cross section, infinitely long, and sym-

metrical about the central conductor as shown in Fig. 1

where the circles represent the coupled conductors. The

medium surrounding the conductors is assumed to be

homogeneous and isotropic, Then it is possible to de-

scribe TEM propagation along such a structure in terms

of three orthogonal modes, that is, field distribution at

any transverse plane can be expressed as a linear com-

bination of these three fundamental TEM-modes [11].

Of course, they have a unique propagation constant, but

have different characteristic immittances. Proper choice

of the fundamental modes is necessary so as to simplify

the analysis.

A. Fundamental Modes for the Derivation

of Impedance Matrix

Figure 2 shows a set of fundamental modes which are

given in convenient forms for deriving the impedance

matrix of the coupled transmission line six-port and are

designated as A-, B-, and C-mode.

Now consider a system of three conductors and

ground as shown in Fig. 1. The potentials of the con-

ductors to ground are related to the charges on them
per unit length by

E:]=[; ; iuil ‘1)
where the p’s are known as the coefficients of potential.

The static capacitances of conductors to ground for

the fundamental modes are given by

CIA = CIIIA = (f&/~I)QI=QII/2=Q11r

= l/(pll + 2412+ p~3)

CIIA c (QII/~11) Q1=Q1112=Q111= l/(P22 + PIJ
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(4)

CIB D CIIIB G (QI/~I)Q1=–Q1l/Z==Q1ll

= l/(pll – 2$12 + p13)

CIIB G (QII/VII)~l=–QIIfZ=QIII = 1/($22 – @

c1c = CIIIC D (QI/~I)Q1=–~,,, ,Qn=o

= I/(pll – p13) (2)

where the subscripts I, II, and III denote the coupled

conductors and the subscripts A, B, and C denote the

fundamental modes.

When the coefficients of potential satisfy the following

condition:

2P22 = pll + p13, (3)

we obtain from (2)

CIIA z 2CIA

CIIB G 2CIB

and from (1)

VI = VII = J“III for A-mode

VI = – VII = VIII for B-mode

VI = – VIII, VII = O for C-mode (5)

where the V’s are the potentials of the coupled con-

ductors with respect to ground for the fundamental

modes in Fig. 2.

Equation (3) is an important relation in this paper

and a discussion of this condition is presented in

Section VII.

B. Fundamental Modes for the Derivation

of A dm~ttance Jlatrix

Figure 3 shows a set of fundamentid modes given in

convenient forms for deriving the admittance matrix of

the coupled transmission line six-port. They are again

designated as A-, B-, and C-mode since it will be shown

later that fundamental modes in Fig. 3 are identical to

those in Fig. 2.

Solving (1) for the Q’s, we obtain

E:]=[ c :1”[:1 ‘“

where c] 1 and C2Zare the coefficients of self capacity and

cIS and cIS are the coefficients of induction.

Using (6), the static capacitances of conductors to

ground per unit length for the fundamental modes

shown in Fig. 3 are given by

CIA D CIIIA D GII + c12+ C13

C1lA c czz+ 2CIZ

CIB a CIIIB - CII — CIZ+ c13

C1lB = czf – 2clZ

CIC Q CI1lC Q C1l — C13. (7)

(NJC3
Charge QI Q= QE

Potent ia 1 v=

Fig. 1. Cross section of a coupled three-coucluctor
transmission line above ground.
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Fig. 2. Fundamental modes used in deriving the i]mpedanw
matrix. (a) A-mode. (b) B-mode. (c) C-mode.

G)@@
V,.4 VA VA

(a)

v’ c1 -Vc

_i- —

(:
Fig. 3. Fundamental modes used in deriving the ac[mittance

matrix. (a) A-mode. (b) B-mode. (c) C-mode.
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Equation (3) can be rewritten in terms of the c’s in (6) as

C22= 2(C11 + C13). (8)

Substituting (8) in (7) gives (4) as k the previous case.

Furthermore, we obtain from (6) and (8)

Q, – Q“ E QIII for A-mode
2

Q,-$+Q1lI for B-mode

QI = –––QIII, QII = O for C-mode (9)

where the Q’s are the charges on the conductors per unit

length for the fundamental modes in Fig. 3.

Referring to (5) and (9), it can be seen that the

fundamental modes in Fig. 2 are identical to those in

Fig. 3 under the condition of (3). Therefore the char-

acteristic impedances for the fundamental modes in

Fig. 2 are simply the reciprocals of the corresponding

characteristic admittances for those in Fig. 3.

II 1. IMMITTANCE MATRICES OF THE COUPLED

TRANSMISSION LINE SIX-PORT

A convenient way to describe the behavior of the

coupled three-conductor transmission line above ground

is by means of either impedance matrix or admittance

matrix, both of which will be derived in this section.

A. Impedance Matrix

The configuration to be considered here is the parallel

coupled transmission line six-port as shown in Fig. 4

where, for simplicity, the ground planes are removed.

The electrical length of each coupled conductor is equal

to 0. Characteristic impedances of each conductor to

ground are designated as listed in Table 1.

Since the fundamental modes chosen in the previous

section are orthogonal, the impedance matrix for the

configuration of Fig. 4 is derived by superposition.

Corresponding to the fundamental modes in Fig. 2 and
applying the sets of current generators at each port

[12] as shown in Fig. 5, after some manipulations we

obtain the impedance matrix,

—
SCY Ra Pa Pfi Rfi SO 13

SD Rfi P/l P. Ra Six 14
(lo)

where

(2.. + zo~ + 22..)/4

(ZOA + .zoB)/2

(Z.. – zob)/4= (ZOA – zoB)/2

(Z.. + z~b – 2ZJ/4, (11)

–jcote

– j cosec 0. (12)

Characteristic immittances, Zo and Y., of a lossless

uniform transmission line operating in the TEM-mode

can be related to its shunt capacitance C per unit length

by [14]

l.&’ 1207T
~;zo=y=p

(c/e)
(13)

e

where e and e, are the permittivity and the relative

permittivity of the dielectric medium, respectively.

From (4) and (13), referring to Table 1, we obtain

22..4 = Zoa

2zOj3 = Z.L). (14)

It should be noted that, among five characteristic im-

pedances in Table I, three are independent. Then (11)

reduces to

P = (.& + Z.B + .20,)/2

Q = (ZOA + zoB)/2

R = (ZOA – &j)/2

s = (ZOA + 2., – 2..)/2, (15)

and

2Q=P+S. (16)

Equation (16) corresponds to (3).

B. Admittance Matrix

The admittance matrix of the coupled transmission

line six-port shown in Fig. 6 is derived in an analogous

manner. Characteristic admittances of each conductor

to ground are designated as listed in Table II. In this

case, the fundamental modes are excited by the sets of
voltage generators [12 ] as shown in Fig. 7. Then the

admittance matrix for the configuration of Fig. 6 is

‘P’cY R’CY S’a S’/3 R’fi P’fl-

R’a Q’a R’a R’@ Q’fl R’/3

S’a R’a P’a P’fi R’/3 S’fi

S’p R’~ P’fi P’a R’a S’a

R’~ Q’/3 R’D R’a ~cY R’a

.P’/3 R’@ S’/3 S’a R’a P’a.

-vl-

V,

V3

v,

V5

.v6-

(17)
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v, I VJ v~/

Fig. 4. Voltages and currents for the impedance matrix.

TABLE I

CHARACTERISTICIMPEDANCES

Fundamental Conductor

N[ode
I I II I III

A-mode I ZO. I ‘oA I z..

B-mode Z.b zdj Zob

C-mode 2., — 2.,

(a)

r JK {-
4

1

I 2’4 Iii 05 I

Fig. 5. Excitations of fundamental modes by the current
generators. (a) A-mode. (b) B-mode. (c) C-mode.

Fig. 6. Voltages and currents for the admittance matrix.

~ABL13 II

CHARACTERISTIC ADMITTANCES
—._.—..

Fundamental Conductor

Mode
—..

I I II I III
——

A-mode Y.. Y.* Y0.
.—. —_

B-mode Y.6 Y.B Y.b

C-mode Iy”’d-lyoo ——..

I I I I -1–.––i–
-J-=’=
(c)

Fig. 7. Excitations of fundamental modes by the voltage
generators. (a) A-mode. (b) B-mode. (c) C-mode.
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where

P’ = ( Y.. + Yo, + 2 YoJ/4

~’ = ( YoA + ~oEl)/2

~’ = (Y.G – y.~)/2 = (Y.* – y@F3)/4

s’ = ( Y.. + Y., – 2 Yo.)/4,

a and ,B are given by (12). (18)

From (4) and (13), referring to Table II, we obtain

YOA = 2 Y..

YOB = 2 Yo& (19)

Then (18) reduces to

P’ = ( Y.. + Y., + 2 Yoc)/4

Q’ = (y.. + Yozl)

R’ = (YO. – YOb)/’,?

s’ = (Yoa + Y., – 2 Yoc)/’l, (20)

and

Q’ = 2(P’ + s’). (21)

Equation (21) corresponds to (18).

IV. DESIGN FORMULAS FOR THE COUPLED STRIP

TRANSMISSION LINE WITH THREE

CENTER CONDUCTORS

Typical cross sections of coupled strip transmission

lines with three center conductors are shown in Fig. 8

where the thin center conductors are shielded by the

upper and lower ground planes of infinite width.

These three configurations use thin strips parallel to

the ground planes, and thus are applicable to the

printed-circuit constructions. The coplanar configura-

tion of Fig. 8(a) was previously analyzed and the design

formula is available [13], while the cross sections of

Figs. 8(b) and 8(c) are treated in this paper.

As was pointed out [13], an additional degree of

freedom is obtained by using the cross sections of

Figs. 8(b) and 8(c) as required in many practical cases.

In Figs. 8(b) and 8(c), strip II is divided into two

parts denoted by II-1 and II-2 which are parallel to the

ground planes. Let strips II-1 and II-2 always be at the

same potential; they will then form a single transmission

line coupled to the transmission line formed by strip I

and to that formed by strip III [14]. Of course, coupling

between strips I and III cannot be neglected.

In the design procedure, characteristic immittances

are first tabulated to provide the desired circuit per-

formance. Then the corresponding physical dimensions

are determined. Design formulas for these two con-

figurations containing zero-thickness conductors are

derived rigorously by means of conformal mapping

techniques. Only the results obtained are presented in

Table 111. The details of the analysis are given in the

Appendix. Of course, the condition of (3), i.e., (14) or

(19), is involved in the design formulas in Table III

[see (51) and (52) in the Appendix], and raises no limita-

tion on coupling.

By the use of the design formulas, cross sections are

designed in a straightforward process to have the de-

sired characteristic immittances. Calculations may be

carried out with the aid of the available tables or

rapidly converging # functions.

Moderate coupling between strips I and 111 may be

achieved if the cross section of Fig. 8(b) is used, while

the cross section

coupling between

of Fig. 8(c) is suitable when closer

strips I and III is required.

—— .
T II 111

(a)
I

mk-.— .—-—.—
‘-i-7 F–-–-—-—1

11+2

Fig, 8. Typical cross sections of coupled strip
line with three center conductors.

transmission

(b) I
,

I!

.—-— .—-—
11~1.2

—-.— ,—. .-— -—. —

Ii I

I

I

(c)
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TABLE 111

Cross Section

Dimensions

A-m ode

B-mode

C-mode

Substitution

modulus

Parameters

Dimensions

DESIGN FORMULAS FOR THE CROSS SECTIONS OI? FIGS. 8(b) AND 8(c)

Fig. 8(b) I Fig. 8(c)

J’

Characteristic Immittances

30rr K’(kc)
2.. = I/Yo, = —– —

<~, K(k,)

60r K’(k.)
z.. = I/Yoc = = —

4E, K(kJ

l–x *_l–# l–v
A*=— ~*=—

I+x ‘ “-l+M’ 1+, ~~~”

d
k= _

(1 – ~*2)(~*2– ,*2)
k=v

~*2(1 – ~*2) – ~*2(1 – ~*2p*2)

[
~ = .sn-l 1 dZ(a)

; tiZ(a)sn2 a + sn a cn a dn a 1

w W + a)
—=&og -

S a

bw @(r – a) ‘ T==

w
= + log

H(E – a)H(q + a) s H($ + a)

T H(: + a)H(n – a) ‘
—.:lOg ——
br H(C – a)

Notes: (3(u) = Jacobian theta-function.
H(u) = Jacobian eta-function.
Z(u) = Jacobian zeta-function.
sn u, cn u, and dn u = Jacobian eHiptic functions.
K(k) and K’(k) = Complete elliptic integrals of the first kind.

.=
s~–1$$ = J L- - = F(x, k) == Elliptic integral of the first kind.

o <(1 — tz) (1 — kztz)

e,= Relative permittivity of the die] ectric medium filling the cross section.
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V. EQUIVALENT CIRCIJITS

The immittance matrices derived in Section III may

serve as a basis for analyzing the transmission properties

of coupled strip transmission lines with three center

conductors (or other coupled TEM three-conductor

transmission lines with common return). In many prac-

tical cases, however, it is desirable to present the equiv-

alent circuits of the two-port networks obtained by

applying the pertinent port conditions to the coupled
transmission line six-port [15 ], [16].

Distributed TEM networks compc)sed of lumped re-

sistors and Iossless equal length transmission lines can

be treated in a manner analogous to lumped constant

networks by means of a frequency transformation [9]

s = j. tan (rj/2jo) (22)

where jO is the real constant frequency at which a trans-

mission line is a quarter-wavelength long and ~ is the

real frequency variable.

The canonical section to be considered here is the

coupled strip transmission line with three center con-

ductors in which each component line is a quarter-

wavelength long at ~. Then substituting

s = j. tan (7r~/2~o) = j atan 0

in (10) gives the impedance matrix of the canonical

section

where P.

VI

V21
V3

1V4

V6

V6

Q, R,

1
=—

s

and

P R s

R Q R

s R P

corresponding equivalent circuits and the relationships

of element values is given in Table IV where the boxes

represent the unit elements. Only the two-port networks

with up to two short-circuited ports, whose equivalent

circuits have been obtained from the impedance matrix,

are presented in this table. When the number of the

short-circuited ports is equal to three, the use of the

admittance matrix will simplify the derivation of the

equivalent circuits and the different circuits may be

obtained.

As a specific example of the main advantages gained

by the exact analysis, consider the third order inter-

digital network with open-circuited terminating lines,

whose equivalent circuit is the m-derived type of high-

pass filter, as shown in Table IV (1). However, if the

coupling between nonadjacent lines is neglected, the

capacitor in the shunt series-resonant arm vanishes,

that is, its approximate equivalent circuit is expressed

as the usual constant-k type of high-pass filter [8]. Thus

we find that it is useful for making the cutoff character-

istics steeper to take into account the coupling between

nonadjacent lines.

Equivalent circuits in Table IV can be used to design

the strip-line networks (or other TEM networks) from

the lumped constant networks by the similar method

described by Ozaki and Ishii [9], and Wenzel [10] for

the case of coupled strip transmission lines with two

—-—

s~~ – s’ R~l – S2 P~l – S’ r,

N

R~l – S2 Qdl – S2 R<l – S2 12

P4T – s’ R~l – S2 S~l – S2 13

s~l – S2 Rv’1 – S2 P~l – S2 P R

1[1

S“14 (23)

R@ – S2 QAJI – S2 R~l – S2 R Q R 15

. p~~ – s’ R>/’l – S2 Sdl – S2 s R P 16

are given by (15) in Section III. center conductors. Of course, these equiva kmt circuits
The corresponding admittance matrix is easily deter- may be applicable to synthesis for both broad and nar-

minecf by replacing in (23) P by P’, Q by Q’, R by R’,

S by S’, [v] by [I] and [I] by [v], where P’, Q’, R’,

and S’ are given by (20).

Various s-plane equivalent circuits are obtained from

the immittance matrices of the canonical section for

various port conditions.

The two-port networks, in which one or two com-

ponent lines are either open-circuited or short-circuited

at both ends, are not considered in this section, since
these cclmponent lines do not contribute to the trans-

mission properties but only change the immittance levels

of the networks. These networks, however, may be

applicable to the asymmetrical coupled strip trans-

mission line with two center conductors as will be dis-

cussed in the next section.

A list of sixteen kinds of circuit configurations, their

row bandwidth, since the circuit equivalences and iden-

tities are theoretically valid over the entire frequency

spectrum.

VI. APPLICATION TO THE ASYMMETRICAL COUPLED

STRIP TRANSMISSION LINE WITH

Two CENTER CONDUCTORS

Let us now consider the canonical section of the

coupled strip transmission line with three center con-

ductors. When the line 11I is either open-circuited or
short-circuited at both ends, the resulting four-port

network is considered to be equivalent to the canonical

section of the asymmetrical coupled strip transmission

line with two center conductors.

While several kinds of existing strip-line filters em-
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ploy the asymmetrical coupled strip transmission line and

composed of two center conductors of equal length as

the canonical section [9], [10 ], exact design formulas
ZO~. _ ZOO. = Zoeb_ Zoob.

for the cross section have not been given even for the Comparing (25) with (24) shows these equations to

thin strip case. Approximate formulas [17 ], [181 are be equivalent, if

available for the practical cases, but they cannot be

used when the ratio of the two strip-widths becomes P = (z.,”+ zoo”)/2

relatively greater (or smaller) than unity, or when the Q = (Z.$ + ZOO’)/2
extremely high characteristic impedances (or low char-

R = (ZOe” – ZoO@)/2 = (Z.> – Zo09/2.
acteristic admittances) are required.

(26)

In this section, it will be shown that exact design ~rom (15) and (26) we obtain

formulas for the asymmetrical coupled strip trans-

mission line with two center conductors can be obtained .ZOA= Zo2

from those for the coupled strip transmission line with

three center conductors presented in Section IV.
ZOB = Zo.b

z.. = 2(zo.” – 2.>). (27)

A. Open- Circu~ted Case ZOA, ZOB, and Zo, can be evaluated from the desired

The impedance matrix of the four-port network, in values of Zo.a, Zoo”, Zo,~, and ZoO~.Then the cross section

which the line III is open-circuited at both ends is, using is designed by means of the exact design formulas in

the notation in Fig. 9(a),

[

vl-

V.2

V3

v4-

1——
s

P R

R Q
R~l – S2 Q<l – S2

b<l – s’ Rdl – S2

where P, Q, and R are given by (15), and s by (22).

On the other hand, the impedance matrix of the

canonical section of the asymmetrical coupled strip

transmission line with two center conductors shown in

Fig. 9(b) is [9]

. .

VI

v,

v,

v,
.-

1———
s

z..”+ zoo” z..” – zoo”

2 2

z.: – Zoob Zoeb+ 20.6

2 2

Table 111.

Z02 – 2.2 Zoeb+ zoo~ —
—<1–s’

o
—--–--<1-s’

.

1
L L

z.,’ + zoo” _ 2..” — 200”
<1 – s’

2
dl – s’

2

—

Zoe” – zoo” z..” + zoo” —-
—<1–s’

2
—--–-- dI-s’

2

.zOeb+ zmb ~= Zo.b — Zoob —

2
<1 – s’

2

.2..5-1-20.5 Zoeb_ Zoob

L .4

Zoea _ 200. z..” + zoo”

2 2,

(24)

(25)

In this case, equivalent circuits of the two-port net-where

Zof (ZO$) is the characteristic impedance of strip a(b)
works for various port conditions are listed in ‘Table V.

to ground with equal currents in the same direction
While these equivalent circuits are the same as those

(even-mode characteristic impedance),
presented in [9] and [10], the element values are ex-

pressed as functions of the characteristic impedances of
ZOO”(.Z005) is that with equal currents in the opposite the coupled strip transmission line treated in this paper

direction (odd-mode characteristic impedance), in order to utilize the design formulas in Table I 1-1.
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Fig. 9. (a) Canonical section of coupled strip transmission line with three center conductors in which the line III is oper~-circuitwf
at both ends. (b) Canonical section of asymmetrical coupled strip transmission line with two center conductors.

TABLE V

EQUIVALENT CIRCUITS (OPEN-CIRCUITED CASE)

1 Ir-1’+ z. 1+’2
c, c.

u.e.

1=
24

(3) =

ln!!qT’2
&

(6) I

Element Va 1ue

P s Zo + l\c,

Q = Zo + I/Cz

R=Za

P . l/C + L/n~

Q=L

R = L/n

n=>LC(n’-l)

P=L

Q . l/C + L/na

R = “I/k

B. Short- Circtlited Case

Figure 10(a) shows the canonical section of

coupled strip transmission line with three center con-

ductors, in which the line III is short-circuited at both

ends, while Fig. 10(b) shows that of the asymmetrical

coupled strip transmission line with two center con-

ductors.

In this case, the use of the admittance matrix instead

of the impedance matrix simplifies the procedure.

Comparing the four-port admittance matrix of

Fig. 10(a) with that of Fig. 10(b) [9] shows that these

two networks are equivalent, if

P’ = ( l’.,”+ 1700”)/2

Q’= (Yo~+ IT.09/2

R’ = (1’o,” – Yoo”)/2 = ( l’..~ – ~OOb)/2 (28)

where

Q/T = YO + i/L,

P/T = Yo ~ I,IL=

R/T = Yo

Notes : P, Q, and R are given by (15),.

T= PQ -R’

the

LC(n’-l)>rf’> LC(n-l) P’, Q’, and R’ are given by (20),

P = I/c, + l/c3

Q = I/C, + l/c3

R = l/C3

Q/T = I/L, + ~/L3

P/T .= I/Lz + l/L5

R/T := l/L3

I’.j ( Yo.b) is the even-mode characteristic admittance

of strip a(b) to ground,

Y.oa ( l’oob) is the odd-mode characteristic admittance

of strip a(b) to ground.

From (20) and (28) we obtain

I?oa = (3 Fo,fi – 1’005),/4

~Ob = (3 ~’.o~ – Y.$)/4

l“., = (Yoca + y..”) – (Yo$ + Yoo’)/4. (29)

Equivalent circuits and element values fclr this case

are listed in Table VI.

VII. DISCUSSION

As stated in Section II 1, among the five character-

istic impedances or admittances listed in Table I or II,
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Iv, IvA

Fig. 10. . (a) Canonical section
circmted at both ends. (b)

TABLE

J“ Iv, IV2
4

(a) (b)

of coupled strip transmission line with three center conductors in which the line III is short-
Canonical section of asymmetrical coupled strip transmission line with two center conductors.

VI

EQUIVALENT CIRCUITS (SHORT-CIRCUITED CASE)

Original
Circuit

.4 t-. .
2 -’l 1-

i’~’
(2)

(4)

1-

Equivalent
Circuit

-L4----

Element Value

Q’/’Tzo+l+c,c,

P ~/T* =7m+l/c2

-R ~/7? V=ZO

Q’/T’=l/C + L/na

Pt/T~= r.

-R’/T1. L/n

n2>LC(n= -1)

Q*/T*= L

Pt/T~=l/C + L/n>

-R~/TV= l./n

LC(n’-l)>r?> LC(n-l)

Q’/T’= I/C, + l/C3

Q’/T’= I/C, + I/Cj

-R l/T t = I/Cj

P~= Yo + I/Ll

Q’= YO + I/L%

-R*= YO

P’= l/Ll+ l/L3

Q’= l/Lz+ I/L%

-R* = l/L3

Notes: P’, Q1, and R~ are given by (20).

three are independent because of the existence of the

condition of (3), for which we consider in this section.

A. On the Design of Distributed Networks by the

Use of the Lumped Element Techniques

Equivalent circuits in Table IV contain at most four

elements such as inductor, capacitor, etc., and there

exists an ideal transformer in each of those containing

four elements, as shown in Table IV (4) through (11).

Thus, for such circuits, if we select the inductor, capaci-

tor and unit-element to have the values required from

the synthesis procedure, then the value of the turns

ratio of the ideal transformer is exclusive y fixed, since

the coupled transmission lines treated in this paper have

three independent characteristic impedances or admit-

tances. However, this is not so restrictive if the network

to be designed is symmetrical about its center. The

reason is that for the symmetrical networks, the ideal

transformers, which must be added for making use of

the circuit equivalences in Table IV, always have the

same turns ratio, but of opposite sense, and cancel each

other. On the other hand, if the network to be designed

is not symmetrical, the added transformers generally do
not cancel and, therefore, one more ideal transformer

must be added to preserve the property of the given

network. This additional ideal transformer may be

realized by constructing it to be contained in the cir-

cuits having an ideal transformer in their equivalent

circuits, such as those in Table VII. The equivalent

circuit representations in Table VII (2) through (5)

are different from those in [9] or Tables V and VI in

this paper. However Kuroda’s identities and some net-

work transformations guarantee these circuit equiv-

alences. Circuit configurations in Table VII make use

of the asymmetrical coupled strip transmission line with

two center conductors having three independent char-
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TABLE WI

E~UWALENTCIRCUITSCONTAININGAN In,Eti TRANSFORMER

Original Circuit

(1)

-J_+

(2)

(3)

-i I
(4)

T’EZ

acterist.ic impedances or admittances, for which exact

analysis has been made in this paper. Thus, whether the

network to be designed is symmetrical or not, it is found

that it may be designed by using the results presented

in this paper. Although the turns ratio of the ideal

transformers cannot be chosen arbitrarily, several

physical configurations having identical responses often

allow the desired networks to be realized within the

practical range of the characteristic imrnittances, by the

proper choice. The advantage gained by setting the

condition of (3) is that the rigorous results can be ob-

tained throughout the analysis, and, therefore, no limi-

tation exists on immittance levels or cm coupling.

B. On the Coupled Three-Conductor Transmission Line

A hove Ground Withoz~t the Condition oaf (3)

If we desire four independent characteristic imped-

ances or admittances for the coupled three-conductor

transmission line with common return, analysis must be

done without the condition of (3).

Let us now consider the coupled three-conductor line

above ground, symmetrical about the vertical centerline

as in Fig. 1, but without the condition of (3). The mode

conditions of the three orthogonal TEM-modes which

can propagate on such a structure are as follows:

A-mode VI = VII = VIII (30)

“B-mode: QI = – QII/2 = QIII (31)

{

QI = – QIII,
C-mode:

Q,, = O (32)

VI = — ‘VIII, V-II = o, (33)

where the Q’s are the charges on the conductors per

unit length, the Vs are the potentiak of the conductors,

subscripts 1, II and I I I denote the coupled conductors,

and (32) and (33) are equivalent.

Next, let the characteristic immittances for these

three modes be designated as in Tables I and II in Sec-

tion III. The characteristic impedances are, of course,

the reciprocals of the corresponding characteristic ad-

mittances. Referring to the mode conditions of (30)

through (33) and using (1), (6), and (13) yield

Zoa Zob y.* Y.,— . .
ZOA – ZOB Y.. YO~ “

(34)

Thus, it can be seen that among five characteristic

impedances or admittances, four are independent. 1f we

define the characteristic immittance ratio, ~, as

ZO. Z.b yoA YoJj
—

?=Z–—
2.ZOB= 2 Y.. = 2 Y.b “

(35)

then the remaining relationships for these t’hree modes

are found to be

QI = QII/2y = QIII for A-mode (36)

VI = – 7VII = VIII for B-mode. (37)

Equations (30)–(33), (36), and (37) represent the com-

plete mode conditions of the fundamental modes for the

symmetrical coupled three-conductor transmission line

above ground without the condition of (3). It should be

noted that setting T = 1 corresponds to the conditicm of

(3), and we find that the coupled transmission line

treated in this paper is considered the special case of the

coupled three conductor transmission line without the

condition of (3). Immittance matrices may be derived in

a manner analogous to that used in this paper. Orthog-

onal mode representations of (31), (32), and (36) are

convenient for the derivation of the impedance matrix,

while those of (30), (33), and (37) are Suitalbie for the

admittance matrix.

Furthermore, if we employ the line configurations in

Figs. 8(b) and 8(c) for this case, design formulas may be

derived by the similar method described in the Appen-

dix. The procedure and mapping functions are exactly

the same for this case as for the coupled transmission

line treated in this paper, except that, for A and

B-mode, the final mapping plane, i.e., x-plane in Fig.

12(c), becomes the upper half of the coupled strip trans-

mission line with two unequal-width strips, for w’hich

exact analysis has not yet been made, instead of two

equal-width strips. Although the exact design formulas

cannot be obtained for this case, they can be derived
approximately by using the Ishii’s results [17] giving the

approximate formulas for the coupled strip transmiwion

line with two unequal-width strips. In such a manner

analysis may be made for the coupled three-conductor

transmission line without the condition of (3). Work in

this area is continuing.
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VIII. CONCLUSIONS

Basic information has been presented for a new type

of coupled strip transmission line which, together with a

more conventional one containing two center conduc-

tors, may have a wide variety of applications in the

design of various microwave components. Six-port im-

mittance matrices and design formulas for the cross

sections based on the rigorous conformal mapping solu-

tions may serve as bases for analysis and design of the

devices using coupled strip transmission lines with three

center conductors. The line configurations proposed are

well suited to the printed-circuit constructions. Equiva-

lent circuits of the two-port networks for various port

conditions have been also presented. The use of these

equivalent circuits allows the desired transmission

properties to be obtained by means of the exact syn-

thesis method.

DERIVATION OF THE DESIGN FORMULAS

It is desirable to derive the design formulas which are

necessary for the determination of the cross-section

dimensions from the given values of characteristic im-

mittances by means of conformal mapping techniques.

This can be done by transforming the boundary of the

cross section into a simpler boundary for which the

solution is known.

A. Cross Section of Fig. 8(b)

It is clear that the vertical centerline of the cross

section shown in Fig. 8(b) is replaced by a magnetic wall

for A and B-mode, or by an electric wall for C-mode, in

consideration of the symmetry of the structure. Also, a

magnetic wall can be placed along the horizontal center-

line since the two conducting strips II-1 and II-2 are

always at the same potential. Thus, we need consider in

detail only one quarter of the complete cross section as
shown in Fig. 11 (a).

As a first step, the interior of the z-plane boundary in

Fig. 11 (a) is to be mapped into the first quadrant of the

t-plane in Fig. 11 (b). Electric walls are indicated by the

solid lines and magnetic walls by the dotted lines. The

dotted lines between D and E, and between G and O are

for A and B-mode, while the solid lines are for C-mode.

The letters denote pertinent points of the structure and

will serve as references when transformations to differ-

ent complex planes are made.

Transformation is carried out by the Schwarz-Chris-

toffel method. The differential equation relating the z

and t-plane is

d.z
=C

(sn’ ~ – t’)

z (1 – k’. sn’ a ct’)~(1 – F) (1 – Wtz)
(38)

where C is a constant to lye determined.

magnetic wall

for A and B-mode

electric wall

for C-mode

1

/J c,
------

0
(a)

D

LEFG --0 A B
--—----:4

o stl~l —— ~
t t?~n~ t?sny I’?Sna

(b)

a$~K’ ~*.jK’ ~+,jKt
,jK’ ~ ;---B~----

A
~ K+j K’

Q
I
I
I
I
I
I

;

E ~:F +
0 s K

(c)

Fig. 11. Transformations used in the derivation of the design
formulas for the cross section of Fig. 8(b). (a) z-plane, (b) t-plane.
(c) u-plane,

Substituting

t=snu (39)

in (38) yields the mapping function, after applying some

boundary conditions,

z =+ [ZLz(u) –T(u,a)} ++ (40)

under the following condition:

l–k’snzasnz~
snz ~ = Z(a).

k’sna. cna. dna
(41)

In the above equations, sn u, cn u, and dn u are the

Jacobian elliptic functions, Z(U) is the Jacobian zeta-

function, and T(U, a) is the elliptic integral of the third

kind [19 ]. Equation (39) transforms the first quadrant

of the t-plane to the interior of the fundamental rec-

tangle of the Jacobian elliptic functions on the u-plane

as shown in Fig. 11.
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Next, solving (41) for ~ gives

1 v’~
sn~=—.

k #Z(a) sn2a+ sna. cna. dna
. (42)

It now remains to relate the cross-sectional dimensions

to the corresponding values of the u-plane. Using the

Jacobian theta-function [19 ], @(u), (40) reduces to

b @(u + a)
Z= —log

@(u – a)
+:i+ s

22r
(43)

Applying the boundary conditions at F and O gives

w (1(~ + a)
—. ~ log
br @(j_ – aj

(44)

and

s a
—.

b K(k)
(45)

where K is the complete elliptic integral of the first kind

with modulus k.

Applying the boundary conditions at

s E(t + a)
—. ~ log
b~ H(g – aj

and

A and B gives

(46)

w 27($ – a). H(v + a)
—. ; log — .
b II($ + a). E7(7f– a)

(47)

In (46) and (47), the term His the Jacobian eta-function

[19] defined by

H(u) = – j exp [j(2u + jK’)7r/4K”]@(u + jK’) (48)

where K’ is the complete elliptic integral of the first kind

with complementary modulus

k’ = ~1 – k2.

Thus, the normalized dimensions of the structure of

Fig. 8(b) have been related to the u-plane parameters by

(44) through (47).

1) A and B-iMode: Considering these modes, the first

quadrant of the t-plane in Fig. 11 (b) is mapped into the

entire upper half of the t’-plane and finally into the

infinite strip region of the X-plane as shown in Fig. 12.

These two mapping functions are obtained by the

Schwarz-Christoffel method and are given by

1
~1=

1 — k2 sn2 a.t2
(49)

and

h
x = ~ log t’. (50)

I
I

!
I
I
I
I

(a)

-s-JiLA._LA--&_,,
o ~,1=~ t: ~;

t; “
(b)

I
D LJ .-------JLA_.):--;

%,=0
;:)

Fig. 12. Transformations for A and B-mode for the cross section of
Fig. 8(b). @) t-plane. (b) t’-plane. (c) x-plane.

Inspection of the ~-plane in Fig. 12 (c) shows that the

field inside this bounded region is equivalent to that in

the upper half cross section of the shielded coupled strip

transmission line with two center conductors for which

exact solution has been given by Cohn [20] for the sym-

metrical case. A-mode for the coupled strip transmission

line treated here corresponds to even-mode fc)r that with

two center conductors, while B-mode corresponds to

odd-mode. Furthermore, we find, in consideration of’ (4),

that the X-plane structure in Fig. 12 (c) is symmetrical

with respect to the vertical centerline, i.e.,

X4—X3=X2—X1=X2 (51)

where the x’s are the X-plane dimensions.

Then characteristic immittances for A and B-mode

are given by

2 1 30~ K’ (k,J

2 1 307r K’(kJ
ZOb = 2ZOB ‘—= —= T.——

YOB ~ab d G K(kJ
(52)

and the X-plane dimensions are related to the moduli of

the elliptic integrals by

x2 2
— tanh–l 1

7=7r

x3 2— — tanh–l ~
k-r

(53)
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where

A=wmi

-zp= ‘i 1“ (54)

Now we will substitute corresponding values of the x

and t’-plane at G and A in (50) to get

1 24X
sna. ——

kl+x

l+P
Sn. $= ---= sn a.

24p
(55)

Equation (51) can be written in terms of the t’-plane

values as

t4’= t2’.t3’. (56)

Substituting the t’-plane values at G, A, and B in (56)

gives

2) C-Mode: Considering this mode, the first quadrant

of the t-plane in Fig. 11 (b) is mapped into the upper

half of the t’-plane by

sn~ a — snz ~ 1 – k’t2
~1 =

l–sn2~ “1 –k2Sn2a. t2
(58)

and finally into the infinite strip region of the X-plane by

(50) as shown in Fig. 13. It can be seen that the field

inside the X-plane boundary in Fig. 13(c) is equivalent to

that in the upper half of the shielded strip transmission

line. Then characteristic immittances for C-mode are
given by [21]

307r K’(kc)
zoc=+==—

.. #,. K(kc)

and strip width, X5, in Fig. 13(c) is related to kc by

(59)

x5 2
— tanh–l k..

k=r
(60)

Substitution of the corresponding values of the t and

t’-plane at B in (58) yields, after simplification,

sn2 & cnz q 1 l+V’
—.— .

()
.—— — (61)

Caz .$ dnx q dn~ a l–v

where

Now letting

V = k.. (62)

L- .>FG O A BCD--- ~----

0 Srty 1
L_J— _
R k s?l~ ks’q k Mk

(a)

4’

J._AJ _____
01 t;

(b)

T

‘__.lA4-:f-___:
o %s

(c)

Fig. 13. Transformations for C-mode for the cross section of
Fig. 8(b). (a) t-plane. (b) t’-plane. (c) x-plane.

1–A
A*”—

l+k

l–p
*=

P—
l+P

l–v
v*=_

l+V
(63)

and substituting (55) and (57) in (61), we obtain

Thus the u-plane parameters in Fig. 11(c) have been

related to the moduli of the elliptic integrals giving the

characteristic immittances by (55), (57), and (64).

B. Cross Section of Fig. 8(c)

For A and B-mode, the procedure and mapping func-

tions are the same for this case as for the previous case.

Then we consider only C-mode, for which the vertical

centerline of the cross section of Fig. 8(c) can be re-
placed by a magnetic wall and the horizontal centerline

by an electric wall at zero potential. Therefore only one-

quarter of the complete cross section is analyzed. The

successive transformations for this case are shown in

Fig. 14. Mapping functions are given by (39) and (40)

under the condition of (41). Since the u-plane structure

shown in Fig. 14(c) is the parallel-plate condenser with

no fringing effect, characteristic immittances for C-mode

are readily obtained as
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L------T----
ii--l ~ I

~-{G t)/2

s/2 I

/’

electric wall

& [0 for C-mode

o L

(a)

o Y K“
(c)

Fig. 14. Transformations for C-mode forthecross sectionof
Fig. 8(c). (a) z-plane. (b) t-plane. (c) u-plane.

607r K’(kc)
ZOC=+=T—.

., tie, K(L)
(65)

and the modulus is

k.=k=v. (66)

The design formulas are exactly the same for the cross

section of Fig. 8(c) as for the cross section of Fig. 8(b),

except that ZOO(Y.,) and k are given by (65) and (66)

instead of (59) and (64).
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