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Coupled Strip Transmission Line With Three

‘Center Conductors

S. YAMAMOTO, STUDENT MEMBER, TEEE, T. AZAKAMI, MEMBER, IEEE, AND K. ITAKURA

Abstract—An exact analysis is made for the shielded coupled
strip transmission line with three center conductors. By means of the
immittance matrices presented, the electrical behavior of the coupled
strip transmission line of this type may be completely described.
Design formulas which enable one to evaluate the cross-section
dimensions from the desired values of characteristic immittances
are derived for the two kinds of the line configurations. Equivalent
circuits of the two-port networks for various port conditions are also
presented. In addition, an application is discussed involving the
asymmetrical coupled strip transmission line with two center con-
ductors. The Appendix gives the derivation of the design formulas
by means of conformal mapping techniques.

I. INTRODUCTION

HE multiconductor transmission line has been

found to have interesting properties and, conse-

quently, has received much attention [1]. Appli-
cations have been made to antennas [2], transmission
lines for high speed computers [3], and various circuit
components {4]-[8]. Under the appropriate boundary
conditions, multiconductor transmission lines have been
utilized as filters in the microwave region. Comb-line
and interdigital filters are two examples. The former has
been treated by Matthaei [5] and the latter has been
investigated by Matthaei [4] and more recently by
Wenzel [8].

In these papers, the design data have been obtained
under the assumption that no direct coupling exists
between nonadjacent conductors. Neglect of this type
of coupling allows TEM propagation along multi-
conductor transmission lines to be described in terms of
only two independent modes, and therefore simplifies
the analysis. In so far as rectangular bars or circular
cylindrical rods are used as component lines, this
assumption is considered to be accurate. However, in a
more precise analysis or when the other configurations
are employed, it is necessary to take into account the
coupling between nonadjacent lines as is done in this
paper.

From the viewpoint of the exact synthesis of dis-
tributed TEM-mode networks [9], [10], it is important
and desirable to introduce the coupled quarter-wave
transmission lines with more than three center con-
ductors as the canonical sections. No exact theory, how-
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ever, seems to be available for such coupled transmission
lines, including design formulas for the cross section of
the line configurations as well as immittance matrices.

The purpose of this paper is to present the results of
an exact analysis for the coupled three-conductor trans-
mission line with common return in strip-line form, in
which significant coupling exists between nonadjacent
lines. The procedures presented will be applicable to
more complicated coupled transmission lines.

II. FUNDAMENTAL MODES

We consider the lossless coupled transmission line
consisting of three parallel conductors above ground
with uniform cross section, infinitely long, and sym-
metrical about the central conductor as shown in Fig. 1
where the circles represent the coupled conductors. The
medium surrounding the conductors is assumed to be
homogeneous and isotropic. Then it is possible to de-
scribe TEM propagation along such a structure in terms
of three orthogonal modes, that is, field distribution at
any transverse plane can be expressed as a linear com-
bination of these three fundamental TEM-modes [11].
Of course, they have a unique propagation constant, but
have different characteristic immittances. Proper choice
of the fundamental modes is necessary so as to simplify
the analysis.

A. Fundamental Modes for the Derivation
of Impedance Matrix

Figure 2 shows a set of fundamental modes which are
given in convenient forms for deriving the impedance
matrix of the coupled transmission line six-port and are
designated as A-, B-, and C-mode.

Now consider a system of three conductors and
ground as shown in Fig. 1. The potentials of the con-
ductors to ground are related to the charges on them
per unit length by

V1 pu P12 pus O
Via | =1{p1z paz P12 || Our 1
Vi P13 P12 pu Qur

where the p's are known as the coefficients of potential.
The static capacitances of conductors to ground for
the fundamental modes are given by

Cia = Criia = (QI/VI)QI=QH/2=QHI
= 1/(p11+ 2p12 + p13)
Crua = (Q11/ Vi gmoy /2= = 1/ (P22 + p12)
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Cip = Cmz = (Q1/ VD) oi=—ep /2=y
= 1/(p11 — 2p12 + p13)
Cis = (Q11/Vin)or=—ayy/2=0y = 1/ (P22 — p12)
Cic = Cinie = (QI/VI)QI=—QHI,QH=0
= 1/(pu1 — p13) (2
where the subscripts I, 11, and III denote the coupled
conductors and the subscripts A, B, and C denote the
fundamental modes.

When the coefficients of potential satisfy the following
condition:

2p90 = pu + pis, ©)
we obtain from (2)
Cria = 2C1a
Cis = 2C1p @
and from (1)
Vi=Vn="Vm for A-mode
Vi=—Vu= "V for B-mode
Vi= —Vu, Vu=0 for C-mode S)

where the V’s are the potentials of the coupled con-
ductors with respect to ground for the fundamental
modes in Fig. 2.

Equation (3) is an important relation in this paper
and a discussion of this condition is presented in
Section VII.

B. Fundamental Modes for the Derivation
of Admittance Matrix

Figure 3 shows a set of fundamental modes given in
convenient forms for deriving the admittance matrix of
the coupled transmission line six-port. They are again
designated as A-, B-, and C-mode since it will be shown
later that fundamental modes in Fig. 3 are identical to
those in Fig. 2.

Solving (1) for the Q’s, we obtain

QI €11 Ciz (13 V1
QII =1cig ¢ c12 ||V (6)
QIII €13 Ci2 Ci11 Vi

where ¢1y and c¢qs are the coefficients of self capacity and
¢12 and ¢y; are the coefficients of induction.

Using (6), the static capacitances of conductors to
ground per unit length for the fundamental modes
shown in Fig. 3 are given by

Cia = Cria = e+ 612+ cus
Cria = caz -+ 2¢12
Ciz = Crip = c11 — ¢12 + 13
Cus = ¢z — 2012

Cic = Cue = ¢11 — c13 (7)

®® @

Charge Q1 Qll'. Q@
Potential Vi Vi Vg

=

Fig. 1. Cross section of a coupled three-conductor
transmission line above ground.
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Fig. 2. Fundamental modes used in deriving the impedance
matrix. (a) A-mode. (b) B-mode. (c) C-mode.
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Fig. 3. Fundamental modes used in deriving the admittance
matrix. (a) A-mode. (b) B-mode. (c) C-mode.
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Equation (3) can be rewritten in terms of the ¢’sin (6) as
c2e = 2(c11 + c13). (8)

Substituting (8) in (7) gives (4) as in the previous case.
Furthermore, we obtain from (6) and (8)

Q1 = %2 = Qu for A-mode
Q1= — % = QO for B-mode
Q1= — QOnr, Ouu=0 for C-mode 9)

where the Q’s are the charges on the conductors per unit
length for the fundamental modes in Fig. 3.
Referring to (5) and (9), it can be seen that the
fundamental modes in Fig. 2 are identical to those in
FFig. 3 under the condition of (3). Therefore the char-
acteristic impedances for the fundamental modes in
Fig. 2 are simply the reciprocals of the corresponding
characteristic admittances for those in Fig. 3.

I11. IMmMITTANCE MATRICES OF THE COUPLED
TRrANSMISSION LINE Six-Port

A convenient way to describe the behavior of the
coupled three-conductor transmission line above ground
is by means of either impedance matrix or admittance
matrix, both of which will be derived in this section.

4. Impedance Matrix

The configuration to be considered here is the parallel
coupled transmission line six-port as shown in Fig. 4
where, for simplicity, the ground planes are removed.
The electrical length of each coupled conductor is equal
to 6. Characteristic impedances of each conductor to
ground are designated as listed in Table I.

Since the fundamental modes chosen in the previous
section are orthogonal, the impedance matrix for the
configuration of Fig. 4 is derived by superposition.
Corresponding to the fundamental modes in Fig. 2 and
applying the sets of current generators at each port
[12] as shown in Fig. 5, after some manipulations we
obtain the impedance matrix,

Vil [Pa Ra Sa SB RS PBA[ I
Vo Ra Qa Ra RB8 QOB RB || I
Vs _ Sae Ra Pa PB RB SB I3 (10)
Va S8 RB PB Pa Roa Sa I,
Vs RB QB8 RB Ra Qa Ral| Is
Vel LP8B R8 SB Sa Ra Pa|lIe]
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where
P=(Zot Zo+ 2Zo)/4
Q= (Zoa+ Zo8)/2
R=(Zwu—Zn)/t= (Zoa — Zop)/2

S =(Zoat Zay — 2Z05) /4, (11)
o= —jcoté
8 = — j cosec 0. (12)

Characteristic immittances, Z, and V,, of a lossless
uniform transmission line operating in the TEM-mode
can be related to its shunt capacitance C per unit length
by [14]

Ve 2z, < Ve _ 1207
Y, (C/e)

(13)

where € and ¢, are the permittivity and the relative
permittivity of the dielectric medium, respectively.
From (4) and (13), referring to Table I, we obtain

ZZOA = Zoa

2Z0B = Zab- (14)

It should be noted that, among five characteristic im-
pedances in Table I, three are independent. Then (11)
reduces to

P = (Zos+ Zop+ Zo)/2
Q = (ZOA + ZoB)/2
R = (ZoA —_ ZoB)/Z

S = (ZnA + ZOB - Zac)/z; (15)

and

20 = P+ 8. (16)

Equation (16) corresponds to (3).

B. Admittance Matrix

The admittance matrix of the coupled transmission
line six-port shown in Fig. 6 is derived in an analogous
manner, Characteristic admittances of each conductor
to ground are designated as listed in Table II. In this
case, the fundamental modes are excited by the sets of
voltage generators [12] as shown in Fig. 7. Then the
admittance matrix for the configuration of Fig. 6 is

I, ] [Pae Ra Sa S8 RB PBATV/]
I Ra Qa Ra RS Q8 RB|| V.
I _ S’ Ra Pa PB Rp 58 Vs an
I S’ RB PB Pa Ra Sa Va
I R'8 OB RB Ra Qa Ra Vs
76 | P’8 R'8 S8 Sa Roa PallVsl
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Fig. 4. Voltages and currents for the impedance matrix. Fig. 6. Voltages and currents for the admittance matrix.
TABLE 1 TABLE 11
CHARACTERISTIC IMPEDANCES CHARACTERISTIC ADMITTANCES
Fundamental Conductor Fundamental Conductor
Mode I 11 111 Mode I 11 111
A-mode Zsa Zoa Zoa A-mode Yoo Yoa Yoa
B-mode Zob ZoB Z.,b B-mode ng Y.,B Yob
C-mode Zoe — Zioe C-mode Yoo — Yoo
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Fig. &.

Excitations of fundamental modes by the current

generators. (a) A-mode. (b) B-mode. (¢) C-mode.

Fig. 7. Excitations of fundamental modes by the voltage
generators, (a) A-mode. (b) B-mode. (c) C-mode.
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where
P= (Yot Yo+2V.)/4
Q' = (Yoa+ Vop)/2
R = (Vu—Ya)/2=(V,a— V)/4
§'= Vet Vi~ 2Y00)/4,

« and g are given by (12). (18)
From (4) and (13), referring to Table 11, we obtain
Voo =2V,
Vi =2YV4. (19)
Then (18) reduces to
P'=Yout Vao+2Y,)/4
Q' =Tt Ya)
R = (Yo~ Ya)/2
S'= (Yot Yo —2V00)/4, (20)
and
Q =2P + 5. (21)

Equation (21) corresponds to (18).

1V. DEesioN ForMULAS FOR THE COUPLED STRIP
TRANSMISSION LINE WITH THREE
CeENTER CONDUCTORS

Typical cross sections of coupled strip transmission
lines with three center conductors are shown in Fig. 8
where the thin center conductors are shielded by the
upper and lower ground planes of infinite width.

These three configurations use thin strips parallel to
the ground planes, and thus are applicable to the
printed-circuit constructions. The coplanar configura-

T I1 11X
(a) |
|
TT41
I [ 111 T
T1¢2
(b) f
7]
L 11-1_}_ -2
111

(c)
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tion of Fig. 8(a) was previously analyzed and the design
formula is available [13], while the cross sections of
Figs. 8(b) and 8(c) are treated in this paper.

As was pointed out [13], an additional degree of
freedom is obtained by using the cross sections of
Figs. 8(b) and 8(c) as required in many practical cases.

In Figs. 8(b) and 8(c), strip II is divided into two
parts denoted by II-1 and I1-2 which are parallel to the
ground planes. Let strips 11-1 and I1I-2 always be at the
same potential; they will then form a single transmission
line coupled to the transmission line formed by strip I
and to that formed by strip III [14]. Of course, coupling
between strips I and III cannot be neglected.

In the design procedure, characteristic immittances
are first tabulated to provide the desired circuit per-
formance. Then the corresponding physical dimensions
are determined. Design formulas for these two con-
figurations containing zero-thickness conductors are
derived rigorously by means of conformal mapping
techniques. Only the results obtained are presented in
Table 111, The details of the analysis are given in the
Appendix. Of course, the condition of (3), i.e., (14) or
(19), is involved in the design formulas in Table III
[see (51) and (52) in the Appendix ], and raises no limita-
tion on coupling.

By the use of the design formulas, cross sections are
designed in a straightforward process to have the de-
sired characteristic immittances. Calculations may be
carried out with the aid of the available tables or
rapidly converging ¢ functions,

Moderate coupling between strips I and III may be
achieved if the cross section of Fig. 8(b) is used, while
the cross section of Fig. 8(c) is suitable when closer
coupling between strips I and III is required.

Fig. 8. Typical cross sections of coupled strip transmission
line with three center conductors.
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TABLE III
DEes1GN FORMULAS FOR THE CROSS SECTIONS OF FIGS. 8(b) anp 8(c)

Cross Section Fig. 8(b) ’ Fig. 8(c)

| i

Dimensions b f:% : E"’;ﬂ _:
S

| 1

Characteristic Immittances

A-mode Zoa = 2o = 2/ Vop = 1/, = 207 K'k)
Ve K(ks)
307 K'(kp
B-mode Zoy = 22, = 2/¥op = 1/Vpp = —=
? ? ’ Ve  K(ks)
30r K'(k: ’
C-mode Zoe = 1/ Vs = Gl (k) Zoo = 1/V0y = 90_1 K' (k)
Ve Kk) Ve K(k)
— Fa
A= '\/kakb, » = — y = kc
kb
Substitution —
P—

)\*=1_)‘, M*zl_”, V*zl—__v_ /
T+ 1+a 147 S

modulus k= 4/ (L = MO — ™) k=vwp
N1 — p*%) — pR21 — AR

1 1 2V&
— en—1] - — en-1| —
o= [k‘/l )‘*2] ¢ % 1+>\]
[l JT=%E o [lt+w /%
Parameters £=sn 1[7; 1 — .U-*Z] £ = o E 142 1/M:I
— —1 li_l. :ﬂ] N = sn‘1 —]; —K‘L-—__—M)i
TRV T EVTFwO+w
¢ = sn~? L 240 :I
B VZ(@)sn2a+snacnadna
w_1 ! Ok +a) s _a
Dimensions bW " ok - a)’ b K@)
3:—1—10 H(E—G)H(n—l-d), ﬁ:—l—lo HE+a)
b 2r PHE+OHG— o b w CHE-a

Notes: ®(#)=Jacobian theta-function.
H(u)=Jacobian eta-function.
Z(#)=Jacobian zeta-function.
sn %, cn #, and dn % = Jacobian elliptic functions.
K(k) and K'(k)=Complete elliptic integrals of the first kind.
re d
nly = - =
R R [
&= Relative permittivity of the dielectric medium filling the cross section.

= F(x, k) == Elliptic integral of the first kind.
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O J d 1 ~m|g =2 T
T
(€1) d . b _ )
= - = U = =
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78+) S — —b P s S
(H-ed)s=d)e | |, T, /== a=7 ¢+ =0 5 Jzallygi 1] =—D
leg lv) "y
(21) ¢ -U=-dd )b
a=1 =t I S o= gy
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V. EQuivaLENT CIRCUITS

The immittance matrices derived in Section III may
serve as a basis for analyzing the transmission properties
of coupled strip transmission lines with three center
conductors (or other coupled TEM three-conductor
transmission lines with common return). In many prac-
tical cases, however, it is desirable to present the equiv-
alent circuits of the two-port networks obtained by
applying the pertinent port conditions to the coupled
transmission line six-port [15], [16].

Distributed TEM networks composed of lumped re-
sistors and lossless equal length transmission lines can
be treated in a manner analogous to lumped constant
networks by means of a frequency transformation [9]

s = j-tan (zf/2fo) (22)

where f, is the real constant frequency at which a trans-
mission line is a quarter-wavelength long and f is the
real frequency variable.

The canonical section to be considered here is the
coupled strip transmission line with three center con-
ductors in which each component line is a quarter-
wavelength long at f. Then substituting

s = j-tan (nf/2f;) = j-tan @

in (10) gives the impedance matrix of the canonical
section

YAMAMOTO ET Al.: STRIP TRANSMISSION LINE

where P, Q, R, and S are given by (15) in Section III.
The corresponding admittance matrix is easily deter-
mined by replacing in (23) P by P/, Q by ¢, R by R,
S by S, [V] by [I] and [I] by [V], where P, ', R,
and S’ are given by (20).

Various s-plane equivalent circuits are obtained from
the immittance matrices of the canonical section for
various port conditions.

The two-port networks, in which one or two com-
ponent lines are either open-circuited or short-circuited
at both ends, are not considered in this section, since
these component lines do not contribute to the trans-
mission properties but only change the immittance levels
of the networks. These networks, however, may be
applicable to the asymmetrical coupled strip trans-
mission line with two center conductors as will be dis-
cussed in the next section.

A list of sixteen kinds of circuit configurations, their

s - P R s
Vs R 0 R
AR s R P
Vel 5| SvT=5 RYyT=sF PV =5
Vs Ry/1 —s2 Q+/1 —s* R/1 —s?

LVG_ L. Pv/1 — 52 Ry/1—3s52 Sy/1—3s?
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corresponding equivalent circuits and the relationships
of element values is given in Table IV where the boxes
represent the unit elements. Only the two-port networks
with up to two short-circuited ports, whose equivalent
circuits have been obtained from the impedance matrix,
are presented in this table. When the number of the
short-circuited ports is equal to three, the use of the
admittance matrix will simplify the derivation of the
equivalent circuits and the different circuits may be
obtained.

As a specific example of the main advantages gained
by the exact analysis, consider the third order inter-
digital network with open-circuited terminating lines,
whose equivalent circuit is the m-derived type of high-
pass filter, as shown in Table IV (1). However, il the
coupling between nonadjacent lines is neglected, the
capacitor in the shunt series-resonant arm vanishes,
that is, its approximate equivalent circuit is expressed
as the usual constant-% type of high-pass filter [8]. Thus
we find that it is useful for making the cutoff character-
istics steeper to take into account the coupling between
nonadjacent lines.

Equivalent circuits in Table IV can be used to design
the strip-line networks (or other TEM networks) from
the lumped constant networks by the similar method
described by Ozaki and Ishii [9], and Wenzel [10] for
the case of coupled strip transmission lines with two

SvV1— 52 Ry/1—5s?2 P/ —s2 717
R/1 — 52 Q1 —5s? Ry/1—35? Iy
Py/1 — 52 RV1—352 Sy/1—¢s? I;
P R S I, (23)
R Q R I
S R P _ Lls_

center conductors. Of course, these equivalent circuits
may be applicable to synthesis for both broad and nar-
row bandwidth, since the circuit equivalences and iden-
tities are theoretically valid over the entire frequency
spectrum.

VI. APPLICATION TO THE ASYMMETRICAL COUPLED
StrIP TRANSMISSION LINE WITH
Two CENTER CONDUCTORS

Let us now consider the canonical section of the
coupled strip transmission line with three center con-
ductors. When the line III is either open-circuited or
short-circuited at both ends, the resulting four-port
network is considered to be equivalent to the canonical
section of the asymmetrical coupled strip transmission
line with two center conductors.

While several kinds of existing strip-line filters em-
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ploy the asymmetrical coupled strip transmission line
composed of two center conductors of equal length as
the canonical section [9], [10], exact design formulas
for the cross section have not been given even for the
thin strip case. Approximate formulas [17], [18] are
available for the practical cases, but they cannot be
used when the ratio of the two strip-widths becomes
relatively greater (or smaller) than unity, or when the
extremely high characteristic impedances (or low char-
acteristic admittances) are required.

In this section, it will be shown that exact design
formulas for the asymmetrical coupled strip trans-
mission line with two center conductors can be obtained
from those for the coupled strip transmission line with
three center conductors presented in Section IV.

A. Open-Circuited Case

The impedance matrix of the four-port network, in
which the line 111 is open-circuited at both ends is, using
the notation in Fig. 9(a),
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and
Zoea - Zooa = Zaeb - Zoob-

Comparing (25) with (24) shows these equations to
be equivalent, if

P = (Zo*+ Z:/2
Q = (Zoeb + Zaob)/2

R = (Zoea' —_ Zaaa)/z = (Zoeb - Zoob)/2- (26)
From (15) and (26) we obtain
ZoA = Zaeb
Zop = Zuo®
Lo = Z(Zoea' - Zoeb)- (27)

Zos, Zom, and Z,, can be evaluated from the desired
values of Z,f, Zol, Zo.b, and Z,t. Then the cross section

is designed by means of the exact design formulas in
Table I1I.

V1 P R R\/l——sz P\/1—82 Il
Va| 1 R Q 0v1—5% R+/1—s? I, 24
Vs s LR\/1 =2 QVI=s 0 R I
V4 Py/1—5s? Ry1—s? R P 1,
where P, Q, and R are given by (15), and s by (22).
On the other hand, the impedance matrix of the
canonical section of the asymmetrical coupled strip
transmission line with two center conductors shown in
Fig. 9(b) is [9]
r 7] r Zoea_l'Zooa Zoea"—Zoolz ‘Zaea_sz‘z Zoea“_l_Zoo‘z ] F_ ]
V — 1—s? 1—s2 I
1 5 5 5 Y4 ) vV 1
Zoeb_ Zoob Zoeb+Zaob Zaeb+Zoob 0e Zoob
v e 1—s? 1—s2 I
ol 2 2 Y vi=s) L
- . (25)
V N Zoeb_Zoob \/1 Z06b+ZODb \/1 3 Zﬂeb+ZOOb Zoeb_ZODb ]_
? 2 2 2 2 ?
Zaea+Zooa Zae Zuaa Zoea—Zooa Zcea+Zooa
14 V1 —s? 1—s2 —_— —_— I
R 2 2V 2 2 JL
where In this case, equivalent circuits of the two-port net-

Zo& (Zod) is the characteristic impedance of strip a(b)
to ground with equal currents in the same direction
(even-mode characteristic impedance),

Zoo? (Zo?) is that with equal currents in the opposite
direction (odd-mode characteristic impedance),

works for various port conditions are listed in Table V.
While these equivalent circuits are the same as those
presented in [9] and [10], the element values are ex-
pressed as functions of the characteristic impedances of
the coupled strip transmission line treated in this paper
in order to utilize the design formulas in Table II1.



YAMAMOTO ET AL.: STRIP TRANSMISSION LINE

455

72y

I, I,
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(a) Canonical section of coupled strip transmission line with three center conductors in which the line III is oper-circuited

at both ends. (b) Canonical section of asymmetrical coupled strip transmission line with two center conductors.
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l‘ I VKB TV_;
7 e 1
Fig. 9.
TABLE V
EQUIVALENT CIrcuits (OPEN-CIRCUITED CASE)
Original Equivalent
Circuit Circuit Element Value
P =Zo + 1/C
I 14H 2z, __|C;_02 '
CCT
2 G N Q=20 + 1/C,
T o u.€. —0
(1) R = Zo

10 Iin (noi) 2 P = 1/C + L/n*>
—] c
2 L Q=L

R = L/n

n*>LC(n* =1)

n () =
10_'170/ 24 2 P =1L

I
X - c l L Q = 1/C + L/n*
O — 1 R =t/n
(3) LC(n -1 > LC(n-1)
- 1 é—oz P = 1/C,+ 1/C;
: 1 2
2" TC3 Q = 1/C,+ 1/C,
1o — o -]
(4) R = 1/C,
1 2 = Yo + 1
’ Y. ) Q/T o /L
_;::I—og uw.e P/T = Yo + 1/L,
1o 1o —
(s) R/T = Yo
Ly
1 2 | Q/T = 1/L,+ 1/Ls
j e — ) Bl b s 1L, 1/1
o B
6) R/T = /1

Notes! P, Q, and R are given by (15)}.

T = PQ - R*

B. Short-Circuited Case

Figure 10(a) shows the canonical section of the
coupled strip transmission line with three center con-
ductors, in which the line III is short-circuited at both
ends, while Fig. 10(b) shows that of the asymmetrical
coupled strip transmission line with two center con-
ductors.

In this case, the use of the admittance matrix instead
of the impedance matrix simplifies the procedure.

Comparing the four-port admittance matrix of
Fig. 10(a) with that of Fig. 10(b) [9] shows that these
two networks are equivalent, if

P = (Yo" + Vo) /2
O = (Yoo + Voh)/2

R = (Yoea - Yooa)/z = (Yoeb - I/vaob)/2 (28)

where

P!, (, and R are given by (20),

V.2 (V,») is the even-mode characteristic admittance
of strip a(b) to ground,

Y,.* (V,b) is the odd-mode characteristic admittance
of strip a(b) to ground.

From (20) and (28) we obtain
V=@V, — V,»)/4
Irob = (3 I70017 - Yoeb)/4

Iroc = (Yoea + I/ooa) - (Yoeb + Yoob)/4f~ (29)

Equivalent circuits and element values for this case
are listed in Table VI.

VII. DiscussioNn

As stated in Section III, among the five character-
istic impedances or admittances listed in Table I or II,
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(a) Canonical section of coupled strip transmission line with three center conductors in which the line III is short-

circuited at both ends. (b) Canonical section of asymmetrical coupled strip transmission line with two center conductors.
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Fig. 10.
TABLE VI
EQuivALENT CIrcUITS (SHORT-CIRCUITED CASE)
Original Equivalent
Circuit Circuit | Eiement Value
Q'/T'=Zo+1/C
s ' , Hb2 s
T, & = P'/T'=Zo+1/C,
1o u.g, ——a
<R [
(1) /T'=Zo
1 1:n (20 2 Q'/T'=1/C + L/n?*
o — c P'/T'= L
I — (D
TR S— R — “RY/T!= L/n
(2) n*>LC(n* =1)
1 o AN 220 Q'/T'= L
-_F:—:l:— c L P'/T'=1/C + L/n*
~—
o ——— | -R'/T'= L/n

LC(n*-1)>r®*> LC(n=1)

Q'/T'= 1/C,+ 1/C;

P s S Ly [ e L
o GL & /1= 1/6; ¢ 1/C,
T4
[ o
0 -R'/T'= 1/C,
sC— = Yo [F°2| P'= Yo+ /L,
= oo L L,
P e— N E Q'= Yo + 1/1,
[ S— T
(=) -R'= Yo
Ls
P e S 2| Pr= WL 1/Ls
P e o f2 | Qe 11,0 11,
—_
(6) -R'= 1/L;
Notes: P',Q', and R' are given by (20).

T' = P1Q' - R'*

three are independent because of the existence of the
condition of (3), for which we consider in this section.

A. On the Design of Distributed Networks by the
Use of the Lumped Element Techniques

Equivalent circuits in Table IV contain at most four
elements such as inductor, capacitor, etc., and there
exists an ideal transformer in each of those containing
four elements, as shown in Table IV (4) through (11).
Thus, for such circuits, if we select the inductor, capaci-
tor and unit-element to have the values required from
the synthesis procedure, then the value of the turns
ratio of the ideal transformer is exclusively fixed, since
the coupled transmission lines treated in this paper have
three independent characteristic impedances or admit-
tances. However, this is not so restrictive if the network
to be designed is symmetrical about its center. The
reason is that for the symmetrical networks, the ideal
transformers, which must be added for making use of
the circuit equivalences in Table IV, always have the
same turns ratio, but of opposite sense, and cancel each
other. On the other hand, if the network to be designed
is not symmetrical, the added transformers generally do
not cancel and, therefore, one more ideal transformer
must be added to preserve the property of the given
network. This additional ideal transformer may be
realized by constructing it to be contained in the cir-
cuits having an ideal transformer in their equivalent
circuits, such as those in Table VII. The equivalent
circuit representations in Table VII (2) through (5)
are different from those in [9] or Tables V and VI in
this paper. However Kuroda’s identities and some net-
work transformations guarantee these circuit equiv-
alences. Circuit configurations in Table VII make use
of the asymmetrical coupled strip transmission line with
two center conductors having three independent char-
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TABLE VII
EQU(VALENT CIRCUITS CONTAINING AN IDEAL TRANSFORMER

Original Circuit Equivalent Cirecuit

I

= |
=55
=T
= L

acteristic impedances or admittances, for which exact
analysis has been made in this paper. Thus, whether the
network to be designed is symmetrical or not, it is found
that it may be designed by using the results presented
in this paper. Although the turns ratio of the ideal
transformers cannot be chosen arbitrarily, several
physical configurations having identical responses often
allow the desired networks to be realized within the
practical range of the characteristic immittances, by the
proper choice. The advantage gained by setting the
condition of (3) is that the rigorous results can be ob-
tained throughout the analysis, and, therefore, no limi-
tation exists on immittance levels or on coupling.

B. On the Coupled Three-Conductor Transmission Line
Above Ground Without the Condition of (3)

If we desire four independent characteristic imped-
ances or admittances for the coupled three-conductor
transmission line with common return, analysis must be
done without the condition of (3).

Let us now consider the coupled three-conductor line
above ground, symmetrical about the vertical centerline
as in Fig. 1, but without the condition of (3). The mode
conditions of the three orthogonal TEM-modes which
can propagate on such a structure are as follows:

A-mode Vi=Vun= "V (30)
"B-mode: Or = — Qu/2 = Qux (31)
T —m ) = 0 32

Comode: {QI QO I (32)
Vi= — Vi, Vig = 0, (33)
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where the Q's are the charges on the conductors per
unit length, the V’s are the potentials of the conductors,
subscripts I, IT and III denote the coupled conductors,
and (32) and (33) are equivalent.

Next, let the characteristic immittances for these
three modes be designated as in Tables I and II in Sec-
tion ITI. The characteristic impedances are, of course,
the reciprocals of the corresponding characteristic ad-
mittances. Referring to the mode conditions of (30)
through (33) and using (1), (6), and (13) yield

Zoa Zob YOA YOB
Zoa Yo

(34)

_ZoB - Yoa -

Thus, it can be seen that among five characteristic
impedances or admittances, four are independent. If we
define the characteristic immittance ratio, v, as

Zoa Zob YoA IfoB
2y 22 2V 2V

v (33)

then the remaining relationships for these three modes
are found to be

QO = QII/Q’Y = Qi
Vi=

(36)
(37

Equations (30)-(33), (36), and (37) represent the com-
plete mode conditions of the fundamental modes for the
symmetrical coupled three-conductor transmission line
above ground without the condition of (3). It should be
noted that setting v =1 corresponds to the condition of
(3), and we find that the coupled transmission line
treated in this paper is considered the special case of the
coupled three conductor transmission line without the
condition of (3). Immittance matrices may be derived in
a manner analogous to that used in this paper. Orthog-
onal mode representations of (31), (32), and (36) are
convenient for the derivation of the impedance matrix,
while those of (30), (33), and (37) are suitable for the
admittance matrix.

Furthermore, if we employ the line configurations in
Figs. 8(b) and 8(c) for this case, design formulas may be
derived by the similar method described in the Appen-
dix. The procedure and mapping functions are exactly
the same for this case as for the coupled transmission
line treated in this paper, except that, for A and
B-mode, the final mapping plane, i.e., x-plane in Fig.
12(c), becomes the upper half of the coupled strip trans-
mission line with two unequal-width strips, for which
exact analysis has not yet been made, instead of two
equal-width strips. Although the exact design formulas
cannot be obtained for this case, they can be derived
approximately by using the Ishii’s results [17 ] giving the
approximate formulas for the coupled strip transmission
line with two unequal-width strips. In such a manner
analysis may be made for the coupled three-conductor
transmission line without the condition of (3). Work in
this area is continuing.

for A-mode

— YV = Vi for B-mode.
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VIII. ConcLUSIONS

Basic information has been presented for a new type
of coupled strip transmission line which, together with a
more conventional one containing two center conduc-
tors, may have a wide variety of applications in the
design of various microwave components. Six-port im-
mittance matrices and design formulas for the cross
sections based on the rigorous conformal mapping solu-
tions may serve as bases for analysis and design of the
devices using coupled strip transmission lines with three
center conductors. The line configurations proposed are
well suited to the printed-circuit constructions. Equiva-
lent circuits of the two-port networks for various port
conditions have been also presented. The use of these
equivalent circuits allows the desired transmission
properties to be obtained by means of the exact syn-
thesis method.

APPENDIX

DERIVATION OF THE DESIGN FORMULAS

It is desirable to derive the design formulas which are
necessary for the determination of the cross-section
dimensions from the given values of characteristic im-
mittances by means of conformal mapping techniques.
This can be done by transforming the boundary of the
cross section into a simpler boundary for which the
solution is known.

A. Cross Section of Fig. 8(b)

It is clear that the vertical centerline of the cross
section shown in Fig. §(b) is replaced by a magnetic wall
for A and B-mode, or by an electric wall for C-mode, in
consideration of the symmetry of the structure. Also, a
magnetic wall can be placed along the horizontal center-
line since the two conducting strips II-1 and I1I-2 are
always at the same potential. Thus, we need consider in
detail only one quarter of the complete cross section as
shown in Fig. 11(a).

As a first step, the interior of the z-plane boundary in
Fig. 11(a) is to be mapped into the first quadrant of the
t-plane in Fig. 11(b). Electric walls are indicated by the
solid lines and magnetic walls by the dotted lines. The
dotted lines between D and E, and between G and O are
for A and B-mode, while the solid lines are for C-mode.
The letters denote pertinent points of the structure and
will serve as references when transformations to differ-
ent complex planes are made.

Transformation is carried out by the Schwarz-Chris-
toffel method. The differential equation relating the z
and ¢-plane is

dz (sn? ¢ — £2)

— = , (38)
dt (1 — k2-sn? a )/ (1 — 21 — k)

where C is a constant to be determined.
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Fig. 11. Transformations used in the derivation of the design
formulas for the cross section of Fig. 8(b). (a) z-plane. (b) t-plane.
(c) u-plane.

Substituting
t=snu (39)

in (38) yields the mapping function, after applying some
boundary conditions,

s
5= — {uZ(e) — 7w, 0)} +j— (40)
T 2
under the following condition:
1 — k?sn?2asn?y¢
sn? { = Z(a). (41)

k’sna-cna-dna

In the above equations, sn #, cn #, and dn # are the
Jacobian elliptic functions, Z(%) is the Jacobian zeta-
function, and 7 (u, @) is the elliptic integral of the third
kind [19]. Equation (39) transforms the first quadrant
of the i-plane to the interior of the fundamental rec-
tangle of the Jacobian elliptic functions on the #-plane
as shown in Fig. 11.
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Next, solving (41) for { gives

1 Vi@
k ~/Z(a)sn’e + sna-cnag-dna .

n{= (42)
It now remains to relate the cross-sectional dimensions
to the corresponding values of the u-plane. Using the
Jacobian theta-function [19], ®(x), (40) reduces to
b OQu-+a s

z = — log j—"

27 O(u — a) 2 (43)

Applying the boundary conditions at F and O gives
w1 0¢+a

i og ¢ — a) (44)
and
s a
D) (43)

where K is the complete elliptic integral of the first kind
with modulus &.
Applying the boundary conditions at A and B gives

S __1_ H(E*f-a?
b 7 PHE-a (46)
and
@ 1, HC-9Hato

og
b 2x H(Et+a)-H(n — a)

In (46) and (47), the term H is the Jacobian eta-function
[19] defined by

H(w) = — j exp [jQ2u + jK")w/4K]®(u + jK') (48)

where K’ is the complete elliptic integral of the first kind
with complementary modulus

E=+1—F.
Thus, the normalized dimensions of the structure of
Fig. 8(b) have been related to the u-plane parameters by
(44) through (47).

1) A and B-Mode: Considering these modes, the first
quadrant of the ¢-plane in Fig. 11(b) is mapped into the
entire upper half of the #-plane and finally into the
infinite strip region of the x-plane as shown in Fig. 12.
These two mapping functions are obtained by the
Schwarz-Christoffel method and are given by

1

o=
1 — k2gn2qa-£2

(49)
and

/2
x = — log ¢. (50)
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Fig. 12. Transformations for A and B-mode for the cross section of

Fig. 8(b). (a) t-plane. (b) ¢#’-plane. (c) x-plane.

Inspection of the x-plane in Fig. 12(c) shows that the
field inside this bounded region is equivalent to that in
the upper half cross section of the shielded coupled strip
transmuission line with two center conductors for which
exact solution has been given by Cohn [20] for the sym-
metrical case. A-mode for the coupled strip transmission
line treated here corresponds to even-mode for that with
two center conductors, while B-mode corresponds to
odd-mode. Furthermore, we find, in consideration of (4),
that the x-plane structure in Fig. 12(c) is symmetrical
with respect to the vertical centerline, i.e.,

X4 — X3 = X2 X117 X2 (51)

where the x's are the x-plane dimensions.
Then characteristic immittances for A and B-mode
are given by

2 1 30r K'(k)
Zoa = 2Z0A = = = =T
I[aA Yaa '\/ € K(ka)
2 1 30r K'(k)
22,8 = = -
Yob '\/ € K(kb)

Zob = (5 2)

YoB

and the x-plane dimeunsions are related to the moduli of
the elliptic integrals by

2

x_Z tanh™1 )\

h T

z}; = —tanh™! (53)
™
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where
A = Vi
L2 (59)
M kb

Now we will substitute corresponding values of the x
and #/-plane at G and A in (50) to get

1 2V
Sn @ = — ——
E 142
sn &= Lena (55)
“w

Equation (51) can be written in terms of the #’-plane
values as

td = 145, (56)
Substituting the #'-plane values at G, A, and B in (56)
gives

sn a

1 — 2
/‘/1 — < u) dn? a
L4 p
2) C-Mode: Considering this mode, the first quadrant

of the ¢-plane in Fig. 11(b) is mapped into the upper
half of the ¢/-plane by

(S7)

sng =

sn?a¢ — sn? ¢ 1 — &%

1 —sn%¢ ‘1 — k?sn?a -2

(58)

and finally into the infinite strip region of the x-plane by
(50) as shown in Fig. 13. It can be seen that the field
inside the x-plane boundary in Fig. 13(c) isequivalent to
that in the upper half of the shielded strip transmission
line. Then characteristic immittances for C-mode are
given by [21]

1 30r K'(k)

Loe = = — (59)
Yoc \/ €r K(kc)
and strip width, x;, in Fig. 13{(c) is related to k, by
2
X _ 2 tanh R, (60)
h T

Substitution of the corresponding values of the ¢ and
t-plane at B in (38) yields, after simplification,

sn? & cn?y 1

__<1—f—1/>2
ca’é dn’g dn’a "\ -y

v = k.

(61)

where
(62)

Now letting
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Fig. 13. Transformations for C-mode for the cross section of
Fig. 8(b). (a) t-plane. (b) t'-plane. (c) x-plane.
1 —A
A =
14+
u* = s
1+4+u
. 1 —v» (63)
1+
and substituting (55) and (57) in (61), we obtain
1T (2 — 72
k= 4/ ( ( ) - (64)
AF2(1 — p*2) — pR2(1 — A¥2u*2)

Thus the u-plane parameters in Fig. 11(c) have been
related to the moduli of the elliptic integrals giving the
characteristic immittances by (55), (57), and (64).

B. Cross Section of Fig. 8(c)

For A and B-mode, the procedure and mapping func-
tions are the same for this case as for the previous case.
Then we consider only C-mode, for which the vertical
centerline of the cross section of Fig. 8(c) can be re-
placed by a magnetic wall and the horizontal centerline
by an electric wall at zero potential. Therefore only one-
quarter of the complete cross section is analyzed. The
successive transformations for this case are shown in
Fig. 14. Mapping functions are given by (39) and (40)
under the condition of (41). Since the #-plane structure
shown in Fig. 14(c) is the parallel-plate condenser with
no fringing effect, characteristic immittances for C-mode
are readily obtained as
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Fig. 14. Transformations for C-mode for the cross section of
Fig. 8(c). (a) z-plane. (b) -plane. (c) u-plane.

1 60r K'(k) (65)

and the modulus is

ke=k = w. (66)

The design formulas are exactly the same for the cross
section of Fig. 8(c) as for the cross section of Fig. §(b),
except that Z,.(Y,) and k£ are given by (65) and (66)
instead of (59) and (64).
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